Integrated Development System
WORLD

Dynamic G

IntrOdUCtlon IZEIiIe Edit Compile Run Inspect Options D Dle - - :
Dynamic C" is the development system by which yoUEZLJE=/ R[] [][[conpie][sosem] Regs | stk]| |
develop software that runs on younrld controller. | —S0RAPLEICOILE -1~
Dynamic C incorporates an easy-to-use program edjtofiirt cuntt, counto:
fast C compiler, and source-level debugger. The C coMy,. ;uie0.
piler has enhancements that support embedded Syslerfig .utises "t = e = &
development. DuatCount(100)
while(!_DMAFLAGO && !_DMAFLAGI){ L

Dynamic C runs in Windows3(1, NT, or 95) on your PHnemaeoaL(0. Zcountd): HIE pr— =
IBM-compatiblePC and is designed specifically for oot 10000 1d - hl 0900 *
Z-world controllers and control products. D T coonger © as 7 countein®. counto); TEF
There are two VerSions Of Dynamic C: if(p:i::FEic:::;\:r" ;(has %u counts\n”, countl); : “:: : ;:““
Standard Limited t@0K bytes of machine code. 0 ol comel . : d : :
Deluxe nl:lé)rtnl(i)r:\ited and fully supports extended S - waten E : sqé Zm;; 1; h;jmq

Y Lt;u::l ¢4 unsighed int 0 (9x8000) ® Cocoss :._ : ABCo
At this writing, Dynamic C is at revisioh2. . : o

T |

Why C’) Line: 99 Column: 11 Insert Stopped Int:On

Using a programmable controller is the most flexible
way to develop a control system. C is the preferred language debugger has access to all the compiler information, and (3)
for embedded systems programming. It is widely known and you can monitor your controller directly.

produces efficient and compact code. Because it is a high-level . .
Dynamic C also supports assembly language programming.

Ia_nguage, you can develop code much faster t.han you could You do not have to leave C or the development system to write
with assembly language, or some of the machine languages of-

fered byPLC manufacturers. Yet, C allows you to program at aszzer:blli)r/KIaaS glﬁﬁgeiﬁOdoeleror% C?;mmlx C and assembly lan-
the machine level whenever you want. guage, y » I your prog '

C is suitable for complex applications as well as simple ones. CDynam|c C has the following debugging windows:

has floating point math with a substantial mathematical func- STDIO (“standard/0”) allows the program running in your con-
tion library. C allows you to develop complex control algo- troller to print messages on your development screen.
rithms when you need to do so. Assembly Displays an assembly view of compiled code.
Watch Allows you to type and evaluate expressions, monitor or
The Nature of Dynamic C set variables, and call functions at will.
Dynamic C integrates the following development functions Register Displays register contents and status bits.
Editing, Compiling, Linking, Loading, Debugging Stack Displays the top 8 bytes of the processor stack.

into one program. In fact, compiling, linking and loading are ~ Dynamic C’s debugger allows you to set and clear breakpoints
one function: Dynamic C compiles code directly to your target on-the-fly, to single-step with and without descent into func-
controller (or to a file). tions, and to view execution at the assembly level as well as at

Dynamic C has an easy-to-use built-in text editor. Most Win- the source-code level.

dows users will immmediately know what to do. Dynamic C provides extensions to the C language (such as
shared andprotected variables) that support real-world system
development. You can write interrupt service routines in C. Dy-
namic C supports real-time multi-tasking with its real-time ker-
Ultimately, you'll createEPROMfiles or down-loadable files nel and itscostatementextension.

for programs that run stand-alone in the controller.

With the symbolic debugger, you can execute and debug pro-
grams interactively at the source-code level.

Dynamic C comes with many function libraries, all in source
Because all the functions are integratedlybu can switch code. These libraries support real-time programming, machine
from one function to another with a simple keystroRgttie level /O, and provide standard string and math functions.

2900 Spafford Street Davis CA 95616 USA Tel: +916.757.3737 Fax: +916.753.5141 www.zworld.com Revision: A

Z-World 530-757-3737

Dynamic G

References

Please refer to

» The C Programming Languadpy Kernighan and Ritchie,
published by Prentice-Hall.

* C: A Reference Manudly Harbison and Steel, also pub-
lished by Prentice-Hall.

e Z180MPU User’'s Manual

e Z180Serial Communication Controllers

» Z80Microprocessor Family User's Manual
» Microsoft Windows User’'s Manual

Contents
INtroductionccoeeeeiviiiiiieeeeeiic e 2
Dynamic C is Differentccc.uueeeee. 3

* How Dynamic C Differs
Z-World Controllers & Dynamic C 4

L LT Vo = 6
The MeNUSoooviiiirie e 8
The Languageooccecvvvvvvineeneeeeeenn, 10
C Language Elementsceceenee 11
Using Assembly Language.................. 12
Interrupt Service Routines 13

Costatementscccceeveerecveeneen e 13
Remote Downloadc..cccovveviinerenne. 14
Run-Time Error Processing................. 14
EfficienCy ... 15

New Features...........oocccvviiiiiiiininennn, 15
Software Librariescccccovevveininnnnns 16

Dynamic C compiles, links and loads in one pass—directly to
your target. On a fastC, Dynamic C can compile more than
250lines of source code per second. Thus, a large program—
say8,000lines of code—might generadeK bytes of machine
code and take abo@0 seconds to compile.

Dynamic C is Different

In an embedded system, there is no operating system or super-
visor that can halt a program if it goes wrong or perform ser-
vices for the program. An embedded program has to do it all,
and handle its own errors and keep on running. An embedded
program also has to initialize itself.

In an embedded system, a program usually runs E@ROM
(or flash) and uses a separateM for data storage.

Often, an embedded system comprises a number of concur-
rently executing tasks, rather than a single task.

Dynamic C specifically supports embedded systems.

Differences fromANSI C are summarized here and discussed
following this summary:
» The default storage classsfatic, notauto.

» There is natinclude directive, nor are there any include
(header) files. There is#usedirective.

» \Variables that are initialized when declared are considered
named constantand placed iROM. It is an error to try to
change such “variables.”

» Dynamic C has a unique concefunction chaining

» “Costatements” allow multiple concurrent tasks in a single
program.

» You can write interrupt service routines in C.

» Dynamic C hashared andprotected keywords that help
protect your data from unexpected loss.

» Dynamic C has a set of features that allow you to make full-
est use of extended memory.

» Theextern keyword has altered meaning. Tiegister key-
word has altered meaning.

» Dynamic C has aubfunction extension that lets you opti-
mize frequently used code.

» Dynamic C does not support enumerated types.
» Dynamic C allows embedded assembly code.

Default Storage Class

Unlike traditional C compilers, the default storage class for lo-
cal variables istatic, notauto.

Although this fact is disconcerting to many programmers at
first, static storage is preferrable in embedded systems.

Initialized Variables

Static variables initialized when they are declared are consid-
erednamed constant§he compiler places them in the same
area of memory as program codeEiPROMor in flash

memory. Uninitialized variables are placediiaM, and are
initialized by your application program.

Dynamic G

Z-World 530-757-3737

Function Chaining
Function chaining, a concept unique to Dynamic C, allows you

Costatements
Dynamic C provides a capability whereby your program can

to distribute special segments of code in one or more functions.execute a set of tasks concurrently. A data structure, some addi-

When a named function chain executes, all the segments be-
longing to that chain execute. Function chains allow your soft-
ware to “switch modes” momentarily to perform global initial-

ization, data recovery, or other kinds of tasks, at your request.

Dynamic C has two directivegmakechainand#funcchain,

and one keywordsegchain

#makechain chain_name

Create a function chain. When your program executes the

tions to the C language, and some functions comprise what
Z-world callscostatementsA costatement is a construct—a
block of code—that can suspend its own execution, thereby al-
lowing other code to execute.g&tof costatements execute,
presumably, in an endless loop. All of the tasks in the set are in
states of partial completion.

For further detail, refer to the secti@ostatementdater in this
document.

named function chain, all of the functions or chain segments Interrupt Service Routines

belonging to that chain execute.
#funcchain chain_name name

Add a function (or another function chain) to a function
chain.

segchain chain_namd statement$

You can write interrupt service routines in C. The keywnrd
terrupt designates an interrupt service routine:
interrupt my_handler(){

}

Define a program segment (enclosed in curly braces) and at-Shared and Protected Variables

tach it to the named function chain. Function chain seg-
ments defined witlsegchainappear directly after data dec-
larations and before executable statements:

my_function(){
data declarations
segchain chain_x{
some statements which execute under chain_x

segchain chain_y{
some statements which execute under chain_y

function body which executes when my_function is called

}

Your program will call a function chain as it would an ordinary
void function that has no parameters. For example, if your
function chain is namegkcover, this is how to call it:

#makechain recover

recover();

Dynamic C software comes with several built-in function
chains, including GLOBAL_INIT described next.

Global Initialization

Embedded systems typically have no operating system to per-
form services such as initialization of data. Further, various
hardware devices in a system need to be initialized not only by
setting variables and control registers, but often by complex
initialization procedures. For this purpose, Dynamic C has a
specific function chain:GLOBAL_INIT .

You can perform any global initialization you want by adding
segments to theGLOBAL_INIT function chain, as shown un-
derFunction Chainingabove.

Have your program callGLOBAL_INIT during program
startup, or upon hardware reset. This function chain executes
all_GLOBAL_INIT segments in your program (and in Dy-
namic C libraries as well).

You can declare variablgsotected. If your system resets
while a protected variable is being modified, the variable’s
value can be restored when the system restarts.

A system that shares data among different tasks or among in-
terrupt routines can find its shared data corrupted if an interrupt
occurs in the middle of a write to a multibyte variable (such as
typeint orfloat). Declaring a multibyte variabkhared en-

sures that any change to the variablegsrapletechange. (In-
terrupts are disabled while the variable is being changed.)

Extended Memory

Dynamic C supports themegabyte physical address space of
thez180 microprocessor. This is callektended memorgince
thez180logical address spacedsK (16-bit addresses). Under
normal circumstances, Dynamic C takes care of memory man-
agement for you.

Dynamic C also has keywords (suchxdata andxstring),
functions (such asgetstring), and directives (such as
#memmap that help you manage code and data in the ex-
tended memory space. Seleysical Memory

External Functions and Data

The keywordstatic cannot apply to functions. The meaning of
the keywordextern is this:

A variable or function is declaragktern if it is defined in
your target controller'glos.

Declare a variablextern if it is to be defined later in the
program or in another file.

Dynamic C has néinclude directive, but does havetasedi-
rective. Zworld’s #usedirective identifies a library from which
functions and data may be taken. Thelfig.DIR contains the
names of all known libraries. The filEEFAULT.H contains sev-
eral sets offusedirectives, one set for each controller Z-World
offers. You may modify either of these files.

Dynamic G Z-World 530-757-3737

Dynamic C functions are not compiled separately and then The following diagram illustrates the memory management
linked. There are no precompiled software libraries. Dynamic registers and address mapping.
C usessource-coddibraries, from which necessary functions FEFFE

. s CBAR Common/Bank Area Register
are extracted during compilation.
CBR Common Base Register
Dynamic C libraries make global variables and function proto- ggr ok ase Register CBR
types available with special headers like this one: ya
[*** BeginHeader my_proc, my_func, my_var */ CBAR _—
void my_proc(intj); Com | Bank /\ﬁ//
float my_func(float arg); o //J\ﬁ
extern int my_var; FFFF A
[*** EndHeader */ £000 XMEM -
C000
If you create libraries, you must (1) create such headers to 2000
make your functions known to the Dynamic C compiler and (2) 8000 ROOT
add the name of your library toB.DIR. 6000
4000 I BBR
i L» 2000 eIl
Subfunc_tlons) 0000 Bos | BIOS 00000
Subfunctions allow often-used code sequences to be turned into Logical Space Physical Space
a local “subroutine” within a C function. For more detail, seé The |ogical address space is partitioned on 4 kbyte boundaries.
Efficiencylater in this document. The upper half of theBAR identifies the boundary between
. ROOT memory ancKkMEM . The lower half o£BAR identifies
Z-World Controllers and Dynamlc C the boundary between tiB0S andROOT. The start of the

Z-world controllers are based on the80 microprocessor. The BIOS is always address The two base registetBR andBBR
7180is a well-established and popular microprocessor. A de- mapXMEM andROOT, respectively, onto physical memory.
scendent of the origina80 microprocessor, the180 also has
the following on-chip subsystems:

» Dual 16-bit programmable timers

XMEM is a small window into physical memory. Its mapping
will vary. TheROOT is a larger window into physical memory,
but its mapping does not vary. TBEDS mapping is always

» Dual asynchronous serial communication ports fixed at address.)

* Aclocked serial communication port Given a16-bit address, thg180determines, using tHeBAR,

» DualDMA channels for high-speed data transfer between whether the address isXMEM, BIOS, or ROOT. If the address
memory and/O devices. is in XMEM, thez180uses theCBR as the base to calculate the

physical address. If the address iIR@OT, thez180 uses the
BBR. If the address is in tH®OS, thez180uses a base of

15 121
’\\\\\\\\\\\\\\\

logical address
S N S

Many Zworld controllers use a ZiloglO, SCCor KIO chip for
additionall/O capability

Physical Memory

Although Zworld controllers can address upsti@K bytes of
ROM (or 256K flash), ancb12K bytes ofRAM, it is often not

necessary to have memory chips this large on controllers. Typ|-
cal memory chips havé2K or 128K bytes. ‘ !

+

Code and constants are place®®M (or flash). Variable data ’ 77 physical address ‘
(including the system stack) are placedM. T

A physical address is, essentially,

ROM addresses start atRAM always starts at a fixed address (base << 12) + logical address

(usually512K, or 8000Q;).
The Memory Partitions
The meaning of the partitions is this:
Name Size Description

Memory Management

Z180instructions can specifis-bit addresses, givinglagical
address space 6K (65,536) bytes. Dynamic C supports a : —
1-megabytephysicaladdress spacedbit addresses). An on- BIOS 8K Ba§|c Iﬂput/Output_ Systenll, conltamlgg the power-up
chip memory management unitNIU) translated6-bit 2180 tcgmef,e;tﬁr(é(;rlnmumcatmn ernel, and important sys-
addresses t®0-bit memory addresses. ThrglU registers

L . . ROOT 48K The area between tfB0OS andXMEM (the bank
(CBAR, CBR, andBBR) divide the logical space into three sec- area). The root—*normal” memory—resides in a

tions and map each section onto physical memory. fixed portion of physical memory. Roobdegrows
upward in logical space from addrex®0(hex) and
rootdatagrow down frome00Q

XMEM 8K XMEM is an8K “window” into extended physical
memory.XMEM can map to any part of physical
memory simply by changing theBR.

Dynamic G Z-World 530-757-3737

Functions may be classified as to where Dynamic C is allowed The_syslsSuperResetunction returnd if a super reset was

to load them: requested andif not. If a super reset was requested, this func-
Key Description tion calls prot_init which initializes the protected variable
root The function is to be placed in root memory. It can call ~ feature. In addition, it calls the function chain _

functions residing in extended memory. sysSupRstChainYou may add any code you like to this func-
xmem The function is to be placed in extended memory. tion chain. If a super reset was not requested, this function calls

anymem This keyword lets the compiler decide where to place the Jarot_r_ecoverwhich recoverspartially written protected vari-
function. A function’s placement depends on the amount ables (if there are any).
of reserve memory available.

The _syslsPwrFail function returns 1 if a power failure oc-
Dynamic C memory management is automatic. You can controlcurred and 0 otherwise. You cannot use a custom power-failure
how Dynamic C allocates and maps memory with the com- handler with this function.

mands ofOPTIONSmenu. The _sysIsWDTO function returnd of a watchdog timeout

Watchdog Timer occurred and otherwise.

Most ZWorld controllers have a “watchdog” timer that will ini-
tiate a hardware reset unless your program signals the timer p
riodically (about once a second). A failed program will gener-
ally fail to “hit” the watchdog timer. The watchdog timer pro-
vides a natural way to perform fatal error recovery.

Reset Generation

our software can generate two types of system reset. The
functionsysForceResetauses a watchdog reset. The function
sysForceSupRstauses a super reset.

Instruction Timing

Thez180has a relatively efficient instruction set. #4216

MHz, many instructions take abaumicrosecond. Floating

point arithmetic is accomplished in software. Refer to the table
following. Times are given in microseconds.

Real-Time and Multi-Tasking Operations

Dynamic C includes two real-time function libraries to support
real-time multi-tasking operations. Thestatemenéxtension
supports cooperative multi-tasking.

Restart (Reset) Conditions

Arithmetic
Z-World embedded applications need to differentiate the causes . : . .
)) imes required to perform basic mathematical operations.
of reset. Hardware resets are listed as follows: ,
Operation 6.144 9.216 12.288 18.432
Regular reset The systelRESETIline is pulled low and re- 16 bit integer add 4.2 28 21 1.4
Sower fai t 'e‘;sed' trons below a threshold. and th 16 bit integer multiply 147 9.8 7.4 47
ower rallure rese ower drops below a tnhresnold, an € super- o .
visor chip pull¥RESETlow and causes a reset. 16 bit |nteggr _d'v'de 142.2 94.8 711 47.4
. Long (32-bit) integer add 31.7 21.1 15.8 10.6
Watchdog reset The watchdog timer was not resest. It/jpulls) ltiol
RESETlow and causes a reset. Long ?nteger IT?U-tIp y 129.9 86.6 65.0 43.3
Long integer divide 605.3 403.5 302.6 201.8
In addition to these hardware resets, an application may cause Bloating point (32-bit) 104.4 69.6 52.2 34.8
super resetZ-World’s super reset is a mechanism to initialize add or subtract
certain persistent data in battery-backadi. A normal reset Floating point multiply 174 116.0 87.0 58.0
does not initialize these data, betainstheir values. A super Floating point divide 416.6 277.7 208.3 138.9
reset always occurs when a program is first loaded. Subsequen$ine or cosine 4672.8 31152 2336.4 1557.6
resets are normal resets, unless your software performs a supeBquare root 1277.3 851.5 638.6 425.8

reset intentionally.
y Logical Decision Making

Reset Differentiation Execution times of various logical and counting operations are
Dynamic C include a set of functions to differentiate the vari- shown in the list below. Times are given in microseconds for a
ous resets. These functions are grouped into two categories. 9.216 MHz clock.

1 The function names begin with underbay;, bave important if(K)... 2.6 Us
side effects, and may only be calleuce and only oncat

the beginning of youmain program. for(k=0;k<100;k++){...} loop overhead2.8 s
int _sysIsSuperReset() func(n); call overhead withi integer
int _syslsPwrFail() argumenb.8 us
int _sysIsWDTO()

2 The function names do not begin with underbar, have no switch(n){...} 22 s for first casey ps for
side effects, and may be called anywhere in your program. each additional
!n: SYS:SSUPEFFigset() costate{...} costatement entry and exit
INt sysisFwrral
int sysIswWDTO() overhead2 ps

waitfor(...) 19pus

Dynamic G Z-World 530-757-3737

Other Operations windows. Dynamic C provides a variety of windows to

Interrupt latency (guaranteed response to an interrupt) less than Monitor your program’s state:

100ps. Sustained data throughput, interrupt driven at least watch window examine variables, evaluate expressions,

20,000 bytes per second. Burst data transfer rate D8ingat and call functions

least500,000 bytes per second. STDIO window calls toprintf use thesTDIO window
assembly window examine, or step, (dis)assembled code

U register window the z180register values, past and present

Sage stack window shows the top of the processor stack.

Writing Programs

You'll be using one or more Dynamic C text windows to enter
program text. You'll use the same editing techniques as you
would in other Windows applications. The Dynamic C debugger is symbolic. (1) Your executing pro-
gram is linked to source code. The part of your program that is
executing is highlighted in the source code window. (2) When
Compiling Programs you evaluate expressions, variables, and functions, it is in C
Dynamic C gives you several ways to compile programs: language, using the names in your application, and normal inte-
ger, floating, and character representations of constants. (You
can view your program at the machine level if you want to.)

You can scroll the assembly, register, st&¥DI0, and watch
windows to view the history of your program.

You'll create (1) programs and/or (2) function libraries.

Compile to Target

Dynamic C compiles directly to your target controller. If

your controller has flash memory, Dynamic C places code in Single Stepping

flash memory. If your controller h&PROM Dynamic C There are two commands fsingle stepping:
places code iRAM. Dynamic C communicates with your
controller through #@C serial port. If your compilation is
successful, Dynamic C entetsn modeand maintains com-
munication with your target. When you issue one of the single-stepping commands, the cur-
rent statement executes, debugging windows are updated, and
the execution cursor is advanced to the next statement in the
execution sequence.

» Trace into allows descent into function calls
Step over prevents descent into function calls

Compile to File

Dynamic C compiles your program to a file whose nature
and format can be selected with compiler options. Compile-
to-File takes target information from your controller you Breakpoints

have connected to yoerC. At times, you will want to run your program at full speed and

Compile to File withRTI File then stop abreakpoints You can place them (and remove
Dynamic C compiles a program to a filéthouthaving a them) anywhere in your source code, at run-time.

target controller present. If you wish to compile programs in There arehard andsoft breakpoints. Interrupts are disabled at
this way, you must first createRemote Target Information hard breakpoints. Interrupts are restored to their former state
(.RTI) file for the specific controller in which the program pon resumption of execution after a hard breakpoint. Soft
will run. breakpoints do not affect interrupt state.

Compiler Options Watch Expressions

Code withBIOS ~ Generates aBPROMfile containing your program To obtain the value of a variable, to evaluate an arbitrary ex-
and thetBIOS Ofl t?el thafgit con{r}gllle.r. osgg_nally pression, or to call a function out of sequence, select ‘Add/De-
generates an Intel hex format file in addition. lete Watch Expressions’ from thieSPECTmenu. Enter an ex-

Null device (%eg‘:r;itrﬁ 's“;n?:;pc“;'egksig;”'of t{/%lé Jgﬁé(‘:"l’(?rr“é tg’r pression for evaluation. The result appears imthieh win-
(2) get the sizes of each code and data segment. dow.There are two ways:

DLP for Generates a downloadable program file to be 1 Immediate EvaluatiorEnter an expression and click
download used by the %orld download manager. Refer to “Evaluate.” The expression is evaluated once.

the sectiorRemote Downloatbr detail 2 Repeated EvaluatiofEnter an expression and click “Add to
top.” The expression will be added to the top ofwlagch
list. All the entries in the watch list are evaluated every time
your program comes to a stopping place.

Debugging Programs

Once you sucessfully compile a program to a connected target
controller, Dynamic C entersin mode or debug modeThere

are two general debugging methods. Being able to evaluate expressions and function calls both peri-
odically and at will is a very powerful facility. You cahange

your program state as well as monitor it. For instance, you
might reset th@LCBus, or simulate real-world events by
changing the values if inputs and outputs.

1 Make calls tgorintf . Dynamic C has an option to save all
contents printed to th&TDIO window in a file.

2 Probe and test the program, as it runs. Use breakpoints,
single-stepping, watch expressions and the various debug

Dynamic G Z-World 530-757-3737

Creating Stand-Alone Programs By clicking “Lib Entries,” you carbrowseall library func-

The object of building a program in Dynamic C is to create tions known to Dynamic C.

stand-alone programs. Thus, Function Assistance

For a controller wittEPROM The third form of help is variant of function “lookup.” By
Once you have burned &PROM you may place it in the clicking the ‘Insert Call’ button, the function assistant will
EPROMsocket of your controller. When your controller re- help you place function calls in your program.

sets, your program will start running.
The Menus

For a controller with flash memory Dynamic C has eight command menus

When you compile to a controller with flash memory, Dy- FILE EDIT COMPILE RUN
namic C places your program code in flash. Therefore, your

program is non-volatile. When your controller restarts in run INSPECT OPTIONS W!NDOW HELP
mode, your program will start running. as well as the standard Windows system menus. These are de-

_ _ scribed next.
For a controller with a program RAM

When you compile to a controller that fgBROM Dynamic File Menu
C places your program RAM. As long as your controller’'s New Creates a new program in a new window
RAM continues to get power, you can disconnect from Dy- Open Presents a dialog in which to specify the name of
namic C, and restart your controller in run mode, and your a file to open.
program will start running. Save Updates the file to reflect your latest changes.
Save As Allows you to enter a new name for your file and
Help saves it under the new name.
Dynamic C provides three forms of on-line help. Close Closes the active window.
Standard Windows Help Er!nt Preview... PS.hows wfhat your pl)jrlnted Fexct: WI'|| :jook like.
The first form provides descriptions of the available menus, P:!::.éet 0 A”“rg tzxtorog iggosina:fh ofWIE S‘;}V},mers 0
. : .) i up... WS you whi your pri
l:f;?é?';iso'u?r:gii'alggnb:rﬁig%'ons’ as well as other infor use and to set it up for printing your text.
9by) Exit Exit Dynamic C.
Function Lookup]
. . . . Edit Menu
The second form of on-line help provides information about _ _ o
Undo Undoes recent changes in the active edit window.

the use Dynamic C library functions. All library functions You mav undo multiole chandes
have descriptive headers which are made known to Dynamic y P ges.

C at startup. When you request help regarding the function, Redoes modifications recently undong. _
this function header is displayed. Cut Remove selected text from a source file. An image

of the text is saved on the “clipboard.”

Edit Run Help
Undo Alt+Bksp Run F9 Contents

Redo Shift+tAlt+Bksp Run wi No Polling Alt+F9 Tile Horizantally Keystrokes
Ccut Clrlex Tile !ertl.cally §.earch for Help on...
co Crl+C Reset Program Ctrl+F2 Arrange icons Library Help Lookup Ctrl+H
~opy Trace into F7
Paste Ctri+v Message About...
Step over F8 Watch
Find... F5 Toggle Breakpoint F2 gtdio
Replace... Fb Toggle Hard Breakpoint Alt+F2 Essembl F10
Find Next Shift+F5 Toggle Interrupt Flag Ctrl+l Ee isterz
Goto... CtrHG Toggle Polling Ctri+0 ey
Reset Target Ctri+Y Stack
Previous Error Ctrl+P d Information
Next Error Ctri+N / 1 DEMO_RT.C
Edit Mode F4
Options
Open... Editor...
Save i
Inspect g A Lompiler...
ave AS... Debugger...
AddiDel Items... Clrl+W Close Memo ,
Clear Watch Window — . Compile Dis Iary
Update Watch Window Ctrl+U Print Preview... Compile to Target F3 Py
Print... i n Serial...
A st Compile to File Ctrl+F3
Disassemble at Cursor Ctrl+F10 Print Setup... ¥ Show Tool Bar
Disassemble at Address Alt+F10 __ Create = RTI File for Targetless Compile —
Dump at Address Exit Alt+F4 Compile to File with =.RTI File A+ Ctri+F3 Save environment

Z-World 530-757-3737

Dynamic G

Edit Menu, continued

Copy Make a copy of selected text in a file or in one of
the debugging windows. An image of the text is
saved on the “clipboard.”

Pastes the text on the “clipboard” (the result of a
copy or cut in Dynamic C or some other Windows
application) at the current insertion point or in
place of selected text.

Finds specified text.
Replaces specified text.

Once you have specified search text with the
‘Find’ or ‘Replace’ command, the ‘Find next’
command will find the next occurrence of the
same text as you previously specified. If your pre-
vious command was Replace, the operation will
be a replace.

Positions the insertion point at start of the line you
specify.

Locates th@meviouscompilation error in the
source code.

Paste

Find...
Replace...
Find Next

Goto...

Previous Error

Next Error Locates theextcompilation error in the source
code.
Edit Mode Switches Dynamic C back to edit mode.

Compile Menu
Compilation is affected bgompiler options, memory options,
andserial options(under theOPTIONSmMenu).

Compile to Target Compiles your program, loading it in your target
controller's memory.

Compiles your program to a file. Dynamic C takes
configuration information from your target con-
troller.

Create a Remote Target Informatiemij file for
your intended controller.

Compiles your program to a file usingRanfile

Compile to File

Create *RTI File...

Compile to File

with *.RTI File you created.

Run Menu

Run Starts program execution from the current
breakpoint. Registers are restored, including inter-
rupt status.

Run w/ no This command is identical to the nammand

polling with an important exception. When running in
polling mode, Dynamic C polls or interrupts the
target system every00 milliseconds.

Stop Places a hard breakpoint at the point of current

program execution.

Reset Program Resets your program to its initial state.

Trace into Executes one C statement (or one assembly lan-
guage instructionyvith descent into functions.

Step over Executes one C statement (or one assembly lan-
guage instructionyvithoutdescending into func-
tions.

Toggle Toggles a “soft” breakpoint at the location of

Breakpoint the text cursor. Soft breakpoints do not affect the
interrupt state; hard breakpoints do.

Toggle Hard Toggles a “hard” breakpoint at the location of

Breakpoint the text cursor. A hard breakpoint disables inter-
rupts when it is reached.

Toggle Toggles interrupt state (enabled or disabled).

Interrupt Flag

Toggle Polling Toggles polling mode. Normally, Dynamic C polls
or interrupts the target controller evergo milli-

seconds.

Tells the target system to perform a software reset
including system initializations.

Reset Target

Inspect Menu

TheINSPECTmenu provides commands to manipulate watch
expressions, view disassembled code, and produce memory

dumps.

Add/Del Watch Allows you to enter expressions to be evalu-

Expression ated. You can either evaluate this expression im-
mediately by clicking the ‘Evaluate’ button or you
may add it to the watch list by clicking the ‘Add
to top’ button. Expressions in this list are evalu-
ated, with results displayed in the watch window
every time the watch window is updated.

Clear Watch Removes all entries from the watch window.

Window

Update Watch Forces the watch expression list to be dis-

Window played in the watch window.

Disassemble Disassembles the code at the current editor

at Cursor cursor.

Disassemble Disassembles the code at the specified address.

at Address

Dump at Allows you to look at blocks of raw memory

Address valuesyou can display values on your screen, or

write values to a file.

Options Menu

Editor Options (1) Change default tab stops (2) Auto-Indent or (3)

Remove Trailing Whitespace.

Warning ReportsTells the compiler whether to
report all warnings, no warnings or serious warn-
ings only.

Run-Time CheckingCheck array bounds, invalid
pointer assignments, and stack corruption.

Optimize For Forsizeor for speed

Type CheckingPerform strict type checking and
detect demotion. Generate warnings if pointers to
different types are intermixed without type cast-
ing.

File Type for “Compile to File"Se previous re-
marks.

Obiject File OptionDynamic C can optionally
generate an IntelEX format file.

1) Log printf statements and oth8TDIO
output to a file, an@)(specify whether to open
the STDIO window automatically.

Specifies memory settings.

Physical.The size and boundaries@AM and
ROM, or the format of a hex file.

Logical. Specifies (1) the number of bytes allo-
cated for the run-time stack, (2) the number of
bytes allocated to an alternate stack used mainly
for stack verification, (3) the heap size, and (4) the
size of free space.

ReserveRoot reserve andMEM reserve specify
how the compiler allocates memory when compil-
ing code whose destination is not specified (that
is, anymentode).

Compiler
Options

Debugger
Options

Memory

Z-World 530-757-3737

Dynamic G

Options Menu, continued

Display

Serial

Show Tool Bar

Save
Environment

Window Menu

Cascade

Tile Horizontally

Tile Vertically

Arrange Icons

Message
Watch
STDIO
Assembly
Registers
Stack
Information

Help Menu
Contents
Keystrokes

Search for
Help on

Library Help
Lookup

About

Specifies the appearance of Dynamic C windows,
such as foreground and background colors, high-
light colors, and font (type face).

Tells Dynamic C how to communicate with your
target controller.

Toggles the tool bar on or off.
Saves your current options settings.

Displays your windows neatly overlayed and in
order. The window in which you are working is
displayed in front of the rest.

When you issue this command, Dynamic C dis-
plays your windows itnorizontal (landscape) ori-
entation.

When you issue this command, Dynamic C dis-
plays your windows iwertical (portrait) orienta-
tion:

When you have minimized one or more of your
Dynamic C windows, they are displayed as icons.
This command arranges icons neatly.

Activates or deactivates the message window.
Activates or deactivates the watch window.
Activates or deactivates tI8TDIO window.
Activates or deactivates the assembly window.

Activates or deactivates the register window.
Activates or deactivates the stack window.

Activates the information window: The informa-
tion window tells you how your memory is parti-
tioned and how well your compilation wentand

how much space has been allocated to the heap or unsigned int

free space.

Invokes the on-line hadpntentspage.

Displays information on available keyboard short-
cuts and their functions.

Displays help information for various topics.

Obtains help information for library functions.
You may display a list of the library functions cur-
rently available to your program. You may then
select a function name from the list to receive in-
formation about that function.

If you click the ‘Insert Call’ button, the dialog
turns into a “function assistant.” You will probably
need the function help dialog only when you are
unfamiliar with or unsure of a function.

Displays version number and copyright notice.

The Language

Modules

How does Dynamic C know which functions and global vari-
ables in a library to use? A library file contains a groumo#i-
ules A module has three parts: tkey,theheaderand abody

of code (functions and data).

A module in a library has a structure like this one:

/*** BeginHeader funci, varz, ... *
prototype for funa
declaration for vag

/*** EndHeader */

definition of funcl var2 and possibly other functions and data

The line (a specially-formatted comment)

[*** BeginHeader namel, name2, ... */

begins the header of a module and containseiysa list of
names of functions and data available for reference.

When Dynamic C seestasedirective, it compiles every
headerand just the header# the function library.

Every line of code after thendHeader comment belongs to
thebodyof the module until (1) end-of-file or (2) the
BeginHeadercomment of another module. Dynamic C com-
piles theentire body of a module i&ny of the names in the key
are used anywhere in your application.

Macros

Dynamic C support8NSI parameterized macro expansion.
Dynamic C implements théand## macro operators also.
Macros are restricted 82 parameters antb6 nested calls.

Data

Data (variables and constants) have type, size, structure, and
storage class. Primitive data types are as follows:

Type Description
char 8-bit unsigned integer. Rangeto 255 (0XFF)
int 16-bit signed integer. Range32768to +32,767

16-bit unsigned integer. Rangeto 65,535

32-bit signed integer. Range2,247,483,648t0
+2,147,483647

32-bit unsigned integer. Rang@to 232 -1

32-bit IEEE floating point value. The sign bit is
for negative values. The exponent Bdsts, giving
exponents from £27to +128 The mantissa haz!
bits. Only the23 least significant bits are stored;
the high bit is implicitlyl. (z180sdo not have
floating point hardware.)

Range: 6.085x 10%8 to +6.085x 108

long

unsigned long
float

The structures of the primitive data types are shown in relative

size in the following figure:

‘s‘ int

‘ unsigned int

‘ unsigned long int

|
|
‘ s‘ long int ‘
|
|

[s] exp+127 | mantissa 10.. to 198.. float

C has string constants and string storage, but not a string data
type. There are many functions to manipulate strings.

Z-World 530-757-3737

Dynamic G

Storage Classes

Local variable storage can bfatic, auto, orregister. If a vari-
able does not belong to a function, it is caligabal—avail-
able anywhere. Global variables are alwsigdic.

The termstatic means the data occupies a permanent fixed lo-
cation for the life of thggrogram The termauto refers to vari-
ables that are placed on the system stack for the liféurfca

tion call.

The termregister describes variables that are allocated as if
they were static variables, but their values are saved on func-
tion entry and restored when the function returns. Titegss-

ter variables can be used with reentrant functions agetnm
variables, yet they have the speed of static variables.

Argument Passing
In C, function arguments are generally padsgdalue.That is,

arguments passed to a C function are generally copies—on the
program stack—of the variables or expressions specified by th
caller. Changes made to these copies do not affect the original

values in the calling program.

e

interrupt A function is an interrupt service routine.
nodebug A function is not compiled in debug mode.

norst A function does not useST for breakpoints.
nouseix A function usessPas a stack frame pointer.
NULL The null pointer. (This is actually a macro.)
pop A keyword used in conjunction with directives

#memmapand#class
protected Declares a variable to be “protected” against system

In Dynamic C and most other C compilers, however, arrays are size Declares a function to be optimized for size.

always passed by address. This policy includes strings (which
are character arrays).

Dynamic C passestructs by value—on the stack. Passing
largestruct takes a long time and can easily cause your pro-
gram to run out of memory. Pass pointers to latgects if

you are having problems.

If you want a function to modify the original value of a param-
eter, (1) pass the address of the parameter and (2) design the
function to accept the address of the item.

C Language Elements

A Dynamic C application program is a set of files, each of
which is a stream of characters which compose statements in

the C language. The basic elements of the C language include:

keywords words used as instructions to Dynamic C
names words used to name your functions and data
numbers literal numeric values

strings literal character values enclosed in quotes
operators symbols used to perform arithmetic
punctuation symbols used to mark beginnings and endings
directives words starting with# that control compilation

The following material presents Dynamic C'’s few differences
from standard C.

Keywords
The following Dynamic C keywords are notAnSI C:

abort Jump out of, and terminate, a costatement.

anymem Allow the compiler to determine in which part of
memory a function will be placed.

costate Indicates the beginning of a costatement.
debug A function is to be compiled in debug mode.
firsttime A function is to be avaitfor delay function.

failure.

push A keyword used in conjunction with directives
#memmapand#class

ret Indicates that an interrupt service routine written in C
uses theet instruction.

reti Indicates that an interrupt service routine written in C
uses theeti instruction.

retn Indicates that an interrupt service routine written in C
uses theetn instruction.

root Indicates a function is to be placed in root memory.

segchain Identify the beginning of a function chain segment
(within a function).

shared Indicates that changes to a multi-byte variable (such as
afloat) are atomic.

speed Declares a function to be optimized for speed.

subfunc Begins the definition of a subfunction.

useix A function usesX as a stack frame pointer.

waitfor Waits for a condition, completion of an event, or a de-
lay, in a costatement.

xdata Declares a block of data in extended memory.

xmem Indicates that a function is to be placed in extended
memory.

xmemok Indicates that assembly code embedded in a C function
can be compiled to extended memory.

xstring Declares strings in extended memory.

yield Pauses a costatement temporarily, allowing other

costatements to execute.

Names
Names are distinct up 16 chars, but may be longer.
Strings
Dynamic C treats strings the same way standard C does. Char-
acter constants, however, are limited to a single byte.
Directives
Dynamic C has several directives not foundsI C:
e #asm [options..]
#endasm
Begin and end blocks of assembly code.

» #class [push] options..]

#class pop

Control the default storage class for local variables.
» #debug

#nodebug

Enable or disable debug-code compilation.

Dynamic G

#fatal "..."
#error "..."
#warns "..."
#warnt "..."

Instructs the compiler to act as if a fatal er#fatal), an er-
ror (#error), a serious warningtvarns) or a trivial warning
(#warnt) were issued.

#funcchain chain_name name

Add a function, or another function chain, to a function
chain.

#interleave

#nointerleave

Controls whether Dynamic C will intersperse library func-
tions with your program’s functions during compilation.
#nointerleaveforces your functions to be compiled first.
#int_vec[const] function

Loads the address ffnctionin the interrupt vector table at
an offset equal toonst

#KILL name

If you wish to redefine a symbol found in the BIOS of your
controller, you must first “kill” the prior name.

#makechainchain_name

Create a function chain.

#memmap [push] [options..]

#memmap pop

Control the default memory area for functions.
#usepathname

Activates a library (named 0B .DIR) so modules in the li-
brary can be linked with your application program.
#useix

#nouseix

Control whether functions use théeregister as a stack
frame reference pointer or tis® (stack pointer) register.

Z-World 530-757-3737

Registerr (flags) holds status bits:

Flags

[slz] [n] Penv[n]c]

S: sign bit Z: zero bit

H: half-carry P/V: parity or overflow
N: negative op C: carry

The alternate set of registersL") is often used to save and
restore register values. There are instructions to swap register
sets.

ThePCis the program countegPis the stack pointer. TH&
andlY registers are index registers. Thegister is the inter-
rupt vector register. (You can ignore tReegister.)

Dynamic C uses thiL register pairi) to pass the first6-bit
argument, and2j to return a6-bit function result. Dynamic C
uses theCDE register groupl) to pass the firs22-bit argu-
ment and%) to return &2-bit function result.

Thez180has many other special-purpose registers. So also do
the ZilogPIO, SCC,andKIO chips.

Interrupt Service Routines

Dynamic C allows you to write interrupt service routines in C,
although assembly routines tend to be more efficient than the C
equivalent functions.

In general, an interrupt routine written in C saves and restores
all registers. It disables interrupts on entry and reenables inter-
rupts on exit. Interrupt routines cannot have parameters and
must be void (they cannot have “function results”).

Interrrupt Vectors
Interrupt vectors are of two types. The first type handles modes
0, 1 and non-maskable interrupts. This type includes:

08h: jp restart_service
38h: jp interruptO_service
66h: jp nmi_service

The second type handles the madeterrupt used by¥180 pe-

; mode O int
; mode 1int
; non-maskable

Using Assembly Language

To place assembly code in your program, usetgtsgnand
#endasmdirectives.

ripheral devicesZ180internall/O devices and Dynamic C. This
involves a256-byte table, identified by the | register, that can
contain addresses of up128interrupt service routines.

You can place a C statement within assembly code by placing

‘C’in column 1. You can use C variable names in Dynamic C %o set interrupt vectors in the page specified by the | register,

use the following preprocessor directive:

assembly language.

Register Summary
Thez180 has the following basic register set.

General Alternate Special
Registers Registers Registers
A F A F I ‘ R
B C B c' IX (index)
D E D' E 1Y (index)
H L H L SP (stack pointer)
PC (program counter)

RegisterA is the accumulator. RegistadsL are general pur-
pose registers and can be coupled in [DE, HL for 16-bit
values. RegistemB, C, D, andE may also be coupled (and
calledBCDE) for 32-bit values.

#INT_VEC (

The constant expression is the offset, in bytes, of the interrupt
vector, which is always an even number froto 126. The
function name is the name of the interrupt routine.

const_expr) function_name

Dynamic C common interrupt vectors are given in the table fol-
lowing. Some AA/orld controllers use additional vectors.

Z-World 530-757-3737

Dynamic G

Standard Vectors

Addr Name Description
0x00 INT1_VEC INT1, expansion bus attention.
0x02 INT2_VEC INT2vector.

0x04 PRTO_VEC Programmabtémer channeb
0x06 PRT1_VEC Programmabtémer channel
0x08 DMAO_VEC DMA channeb

0XOA DMA1l _VEC DMA channell

0XOC CSIO_VEC Clocked serial/O

OXOE SERO_VEC Asynchronous Serial Channel
0x10 SER1_VEC Asynchronous Serial Channel

Interrupt Priorities, Highest to Lowest

Trap (lllegal Instruction)

NMI (non maskable interrupt)

INT 0 (Maskable interrupts, level Three modes)

INT 1 (Maskable interrupts, level PLCBus attention line)
INT 2 (Maskable interrupts, level 2)

using costatements. Costatements can be used, for instance, to
create delays.

A typical set of costatements will execute in an endless loop.
This is not a requirement, however.

Costatements amoperativebecause they can suspend their
own operation. There are three ways they do this.

1 Wait for an event, or a condition, or the passage of a certain
amount of time. For this, there is thaitfor statement.

2 Use ayield statement to yield temporarily to other
costatements.

3 Use arabort statement to cancel their own operation.

Since costatements can suspend their own execution, they can
also resume their own execution. Placing costatements in a
loop is the simplest way for you to give each costatement a
chance to progress in its turn.

PRTchannel 0
PRTchannel 1
DMA channel 0
DMA channel 1
Clocked serial/O

Costatements can be activaN) or inactive OFF). You may
declare a costatement “always on,” “initially on,” or “initially
off. A costatement that isitially on will execute once and
then become inactive. A costatement thaiitsally off will not

execute until it is started by some other part of your program.

Serial Poro Then it will execute once and become inactive again.
Serial Portl

Remote Download
Costatements

Z-World provides field programmability for its controllers. You
can create a downloadable program file by selecting the appro-
priate compiler option. The World Download Manager

(DLM), resident in a controller, will receive your program,

place it in memory, and start it running. Remote downloading
requires a communications program such as ProComm that has
XMODEM transfer protocol available.

Dynamic C supports multi-threaded real-time programming.
You may use one of the real-time kernels or you may use
costatementsCostatements give yawoperative multi-tasking
within your application.

The advantages are several:

» Costatements are a feature built into the language.
» Costatements are cooperative instead of preemptive.

JvE T Run-Time Error Processing
» Costatements operate within a single program.

Dynamic C’s standard error handler prints error messages to
Costatements are blocks of code that can suspend their own exhe STDIO window. The standard error handler will not work
ecution at various times for various reasons, allowing other when your software is running stand-alone. You should provide
costatements or other program code to execute. Costatements your own error handler:

operate concurrently. For example, the code shown here will
operate as shown in the diagradmrocesses, b, andc, oper-
ate independently and concurrently.

void my_handler(uint code, uint address){
my error processing code...

main(){ main(){
ntx.y. z main ERROR_EXIT = my_handler;
for(;;){ some statements...
costate a { — — U (*ERROR_EXIT)(code , addr);
a b ¢ some statements...
costate b { - . . }
} " " - A built-in Dynamic C symbol-ROM—is set tol if you are
costate ¢ { | | L | compiling to arEPROMfile. Use this variable to install your
} own error handler conditionally:
} #if ROM
} ERROR_EXIT= my_handler ;

It is only when you have more than one task that they can be frendif

consideredtooperative because it is only when you have more Long Jumps

other task. Nevertheless, some single tasks are easier to write |gngjmp functions. If you detect an error anywhere in your

Dynamic G Z-World 530-757-3737

program, you can make a “long jump” to a safe location and static, while most C compilers usaito. Useauto variables in
perform necessary recovery tasks. Usage typically involves reentrant or recursive functions.

jumping from a deeply nested function back to your main pro-)
gram. Execution Speed

Under Compiler Options, you can set a switch to optimize for

Thesetjmp function marks a place in your code and saves the speed or for size. The default is size.

stack pointer and important registers. Teregjmp function

causes a return to the place markedétymp. The processor Subfunctions
stack is immediately “unwound” and a known state is restored. Subfunctions, extensions in Dynamic C, allow often-used code
This is how you do a long jump: sequences to be turned into a “subroutine” within the scope of
/I probably in main() a C function.
jmp_buf savreg; // make a save buffer func(){
int aname();

|f(setjmp(savreg) }{ subfunc aname: { k = inport (x); k + 4; }

code to recover from the error

} aname(); ...
aname(); ...
/l then, somewhere, deeper in your code...

if(big error) longjmp(savreg,1); }
Whenlongjmp executes, execution resumes immediately after The subfunction is prototyped as if it were a regular function. It
the call tosetjmp and the value returned by the cals&tjmp must bestatic and may not have any arguments. Variables used
is the same as the second argument pasdeddpnp. This within the subfunction must be available within the scope of
value can be your error code as long as it is non-zetpr(p the parent C function. The actual code aftersiigfunc key-
returns 0 when you call it directly.) word can appear anywhere in the enclosing function. You indi-

. cate the return value, if any, by placing an expression followed
Watchdog Timer by a semicolon at the end of the subfunction body. This causes

stated, a watchdog timer will reset your system after a certain o gcpg).

period (aboutl.5 seconds, typically) if your software does not

reset the watchdog timer within that period. This safety feature All subfunction calls take three bytes, low overhead compared
ensure that your program is functioning. to some simple expressions. For example, the expression

*ptr++ can generat#4 bytes or more.

Protected Variables - .]
. Substituting the following code:
Your program may need to recover protected variables at re- . ,
static char nextbyte();

start. However, if your program has never run before, your pro- subfunc nextbyte: *ptr++:

gram must initialize protected variables. nextbyte():

The function_prot_recoverrecovers protected variables; the
function_prot_init initializes them. The function
_syslsSuperResetalls whichever of these functions is appro-
priate at startup (if you callsysisSuperResét

Héxtbyte();

can save ten or more bytes for each occurrenoexibyte.
Subfunctions can also make a program easier to read and
understand, if you use descriptive hames for obscure expres-
sions. The advantage of the subfunction over a regular function
is that it has access to all the variables within the program and
the calling overhead is low.

Efficiency

There are a number of methods you can use to reduce the size
of your program, or to increase its speed.

Nodebug Keyword Subfunction calls cannot be nested.
Dynamic C places aRST 28H instruction in debug code at the
beginning of each C statement to provide locations for New Features

breakpoints. These “jumps” to the debugger consume one byte

and about 25 clocks of execution time for each statement. Your

function will not haveRST 28H instructions if you use the

nodebugkeyword in the function declaration: » Function Chaining (specifically includirg
nodebug int myfunc(int x, int z }{ _GLOBAL_INIT function chaii.

Printing the contents of any window.
» C operators in constant expressions in assembly code.

Static Variables « A hexadecimal memory dump command.
Static variables are much more efficient on #180thanauto Horizontal and vertical tiling options

variables. In Dynamic C, the default local storage class is

Revision 5.0 of Dynamic C incorporated these features:
» Macros with Parameters

=

Z-World 530-757-3737

Dynamic G

* Toolbar.

» New COMPILE menu options. Specifically, targetless compi-

lation, and creation of downloadable code.
» Function “Assistant”
» Changes to th€odata structure
* New reset and initialization functions

Backward Compatibility

The#GLOBAL_INIT directive still works as it did in prior re-
leases of Dynamic C.

You can still “download t&RAM.” It's a compiler option. How-
ever, this capability is no longer being supported.

Software Libraries

These are the libraries included with Dynamic C. This list is
subject to change, as new products are introduced, and softwarrngzxx LIB

gets revised.
5KEY.LIB

5KEYEXTD.LIB
9610.LIB
AASC.LIB
AASCDIO.LIB
AASCSCCLIB

AASCUART.LIB
AASCZ0.LIB

AASCZLLIB

AASCZN.LIB
BIOS.LIB

BL11XX.LIB
BL13XX.LIB
BL14_15LIB
BL16XX.LIB
CIRCBUF.LIB
CM71_72LIB
COM232LIB

CPLCLIB
DC.HH
DEFAULT.H

DMA.LIB

DRIVERSLIB
EZIO.LIB

EZIOCMMN.LIB

EZIOPBDV.LIB
EZIOPK23LIB

The basic “five-key” operator interface for the
PK2100andPK2200series controllers.

Extensions to the “five-key system.”

Driver for theBL100's DGL96 daughter board.
Abstract Asynchronous Serial Communication.
STDIO-specific support for theASC library.

SCC-specific support for theASC library. (The
SCCis the ZiloggsC30Serial Communication
Controller.)

XP8700 support for theASC library.

Z0-specific support for theASC library. 0 is the
z180serial por®.

Z1-specific support for theASC library. 1 is the
z180serial portl.

ZNet-specific support for th@ASC library.

Contains prototypes of functions and declarations
of variables defined in, and used by, Bies.

Functions for thé3L1100.

Functions for thé3L1300.

Functions for théL1400andBL1500 series.
Functions for thé3L1600.

Circular buffers functions (used by thascC).
Functions for theeM7100andCM7200series.

Serial communication functions for tle®M ports
on thez104.

Functions foiPK210Q PK220Q andBL1600.
Definitions basic to Dynamic C.

Contains lists oftusedirectives for various
Z-World controllers. Dynamic C automatically se-
lects the list appropriate for your controller.

Support functions for th2180 on-chipDMA chan-
nels.

Drivers for some hardware devices.

Driver for a board-independent unifigd space.
Common definitions for alEzIO libraries.
PLCBus support for th&zIO library.
PK2300function support for th&zIo library.

EZIOPLCLIB

FK.LIB

IOEXPAND.LIB

KDM.LIB
LCD2L.LIB
MATH.LIB
MISC.LIB
MODEM232LIB
NETWORK.LIB

PBUS_LGLIB
PBUS_TGLIB
PK21XX.LIB

PLC_EXPLIB

PRPORTLIB

PWM.LIB
RTK.LIB
S0232LI1B

S1232LI1B

SCC232.1B

SERIAL.LIB

SRTK.LIB
STDIO.LIB
STRING.LIB
SYSLIB
TGIANT.LIB

VDRIVER.LIB

XMEM.LIB
XP82XX.LIB
XP87XX.LIB
XP87XX2.LIB
XP88XX.LIB
Z0232LI1B

Z104.LIB
Z1232LI1B

ZNPAKFMT.LIB

1

PLCBus functions for boards that have native
PLCBuUS ports BL1200, BL1600, PK210Q and
PK2200).

New “five-key” operator interface for tHeK2100
andPK220Q

Driver functions forBL1100 series daughter
boards.

Driver for keyboard/display modules.

LCD support for theeK2100andPK2200Q
Useful mathematical functions.
MiscellaneoukDM support.

Modem functions for th@K2100andPK2200Q

Opto229-bit binary protocol to support master-
slave networking.

PLCBus support for thBL1100.
PLCBus support for the Tiny Giant.
PK2100functions.

PK2200functions.

PLCBus functions for boards that have native
PLCBUS ports BL1200, BL1600, PK210Q and
PK2200.

Parallel port communication protocol between a
controller and &cC.

Pulse width modulation functions.
Real-time kernel.

Serial communication driver f&10 port0 on the
BL1100.

Serial communication driver f@10 port1 on the
BL1100.

Serial communication driver for the ports on
Zilog's Serial Communication Controller.

Serial communication functions for pottand1
of thez180and thesIO. Obsolete

Simplified real-time kernel.

Functions relating to theTDIO window.
(ANSI) functions for manipulating strings.
General system functions.

Functions for the Tiny Giant.

Virtual driver functions.

Function support for extended memory.
Driver for thexP820Q

Driver for thexP870Q

Driver for a secon&P870Q

Driver for thexpggoa

Serial communication driver fa0. Z0 is thez180
serial porto.

Functions for th&104 (no longer available).

Serial communication driver for t1#.80 serial
port1.

Lower level functions supporting the ZNet.

Dynamic C must be installed on a hard disk and requires about 4M of disk space. You
must be running in 386 enhanced mode, using Windows 3.1, Windows 95, or Windows
NT, on a machine having a 386SX processor or better. You must have at least 4M RAM

to run Dynamic C and one free serial port for communicating with your target controller.

